Diketahuipersamaan sebagai berikut: Pertama, eliminasi variabel menggunakan persamaan (1) dan (2) sebagai berikut. Lalu, eliminasi variabel menggunakan persamaan (1) dan (3) sebagai berikut. Lalu, eliminasi variabel x menggunakan persamaan (4) dan (5) sebagai berikut. Substitusi nilai ke persamaan (4) sehingga: Kelas 11 SMAMatriksPenyelesaian Persamaan Linear Dua atau Tiga Variabel dengan Menggunakan Konsep MatriksDiketahui sistem persamaan linear berikut 3x+2y+4z=11 2x+z=3 x-y=-1 Tentukan nilai 4x-3y+ Persamaan Linear Dua atau Tiga Variabel dengan Menggunakan Konsep MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0107Himpunan penyelesaian persamaan polinomial x^3+x^2-4x-4=0...0544Bu Ani adalah seorang pengusaha makanan ringan yang menye...0412Avi dan Anti belanja di toko yang sama. Avi membeli 5 bun...0756Harga 4 kg salak, 1 kg jambu, dan 2 kg kelengkeng adalah ...Teks videosini kita punya soal di mana kita memiliki sistem persamaan linear sebanyak tiga persamaan yang pertama ini persamaan kedua kalinya persamaan yang ketiga lalu kita harus mencari 4 X min 3 Y + 2 Z berarti kita masih harus mencari x y dan z nya terlebih dahulu di sini merupakan soal matriks matriks yang berukuran 3 * 3 nanti pastinya kan ada tiga variabel yaitu x y dan Z maka kita gunakan rumus sebagai berikut yaitu untuk mencari X jadi kita perlu mencari determinan X dibagi dengan determinan utama Kemudian untuk mencari y determinan y dibagi dengan determinan utama untuk menjadi set ke Terminal Jadi bagi dengan determinan utama yang pertama kita harus mengubah soalnya ke dalam bentuk matriks maka 324 kemudian 2 x / 2Di sini katanya tadi 01 + 1 Min 10 x dengan x y z nilainya adalah yang disediakan = 11 3 dan negatif 1. Kita harus mencari x y z nya terlebih dahulu di sini terdapat rumus yang sudah 1 kita perlu mencari determinan utamanya terlebih dahulu kita cari determinan matriks tiga kali tiga kita gunakan cara 1 seperti biasanya 32120 - 1410 lalu kita tulis lagi 3 2 1 2 0 dan negatif 1. Nah, cara sarrus seperti biasanya. Jadi yang ini dijumlahkan ditambah ini kemudian ditambah yang ini yang ini kita kurang kan ini kita kurangkan Dan yang ini kita kurangkanMaka hasilnya adalah 0 + 2 min 8 lalu kita kurangi 0 min 3 + 0 adalah negatif 6 ditambah 3 yaitu negatif 3 ini adalah determinan utamanya lalu kita harus mencari dirinya juga bagaimana caranya tadi extra teksnya atau es yang ada di sini kita ganti dengan yang nilai dari sama dengan ini Mari kita coba tadi dek kita ganti 3 min 120 Min 14 10 kita kalikan dengan 11230 - 1 - 1 seperti cara satu seperti yang tadi kita menghasilkan min 2 min 12 dikurangi 0 Min 11 + 0 nilainya adalah negatif 3lalu kita masih harus mencari Dia Dan Dia chatnya sama seperti desa di tadi yang ada di ruas kedua ini kita ganti dengan yg lain ada di dengan maka 321 kemudian 11 3 - 141 kita kalikan dengan 3 2111 3 dan negatif 1 sama menggunakan cara sarrus seperti tadi tadi kita menemukan 0 ditambah 11 dikurangi 8 dikurangi 12 min 3 ditambah 0 nilainya adalah negatif 6 kalau kita masih harus mencari genset sama seperti kita ganti aja dulu ada 3 dengan nilai dari = 3 2 1 2 0 min 1 1131 kita kalikan dengan 32120 - 1 menggunakan cara sarrus tadi tadi nilainya adalah 0 ditambah 6 Min 22 dikurangi 0 - 9 - 4 - 6 ditambah 13 yaitu negatif 3 kita sudah menemukan DxD disehatkan vitamin utamanya tadi kita bisa mencari nilai F adalah D X min 3 min 3 adalah 1 kalau kita mencari nilai dari G min 6 per min 3 adalah 2 + Z adalah desa terdiri 3 per 3 yaitu 1 kita sudah menemukan nilai dari y dan Z Mari kita cari adalah 4 X min 3 y ditambah 2 Z 4 x 14 b kurangi dengan 326 + 2 * 12 hasilnya adalah 0 Yan dan sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 1!!!−! (!)−!Ulangi!proses!dengan!cara!yang!sama,!sehingga!nilai!iterasi!ke8radalah!!(!),!(!)!dan! 1!!!!−! (!)−! 1!!!!−! (!!!)−! 1!!!!−! (!!!)− PembahasanMisal Eliminasi persamaan dan sehinggadiperoleh hasil perhitungan sebagai berikut. Kemudian, eliminasi persamaan dan sehinggadiperoleh hasil perhitungan sebagai berikut. Substitusi nilai ke persamaan sehinggadiperoleh hasil perhitungan sebagai berikut. Selanjutnya, substitusi nilai dan ke persamaan sehinggadiperoleh hasil perhitungan sebagai berikut. Dengan demikian, nilai dari . Jadi, jawaban yang tepat adalah Eliminasi persamaan dan sehingga diperoleh hasil perhitungan sebagai berikut. Kemudian, eliminasi persamaan dan sehingga diperoleh hasil perhitungan sebagai berikut. Substitusi nilai ke persamaan sehingga diperoleh hasil perhitungan sebagai berikut. Selanjutnya, substitusi nilai dan ke persamaan sehingga diperoleh hasil perhitungan sebagai berikut. Dengan demikian, nilai dari . Jadi, jawaban yang tepat adalah D. A 1 B. 2 C. 7 D. 8 E. 9 Jawaban : E Pembahasan : Perhatikan bahwa nilai mutlak didefinisikan sebagai berikut Diketahui persamaan linear tiga variabel x + y + 2 z = 6. x + 0 + 4 = 6 x = 2 Topik: Sistem Persamaan Linear Tiga Variabel Subtopik:
PembahasanAkan dicari nilai x dan y dengan metode eliminasi-substitusi. Perhatikan perhitungan berikut. Kemudian, substitusikan y = − 3 ke persamaan 2 x − 5 y − 9 = 0 sehingga diperoleh 2 x − 5 − 3 − 9 2 x + 15 − 9 2 x + 6 2 x x ​ = = = = = ​ 0 0 0 − 6 − 3 ​ Dengan demikian, diperoleh nilai dari x 2 − 2 x y + y 2 sebagai berikut − 3 2 − 2 − 3 − 3 + − 3 2 ​ = = ​ 9 − 18 + 9 0 ​ Oleh karena itu, jawaban yang tepat adalah EAkan dicari nilai dengan metode eliminasi-substitusi. Perhatikan perhitungan berikut. Kemudian, substitusikan ke persamaan sehingga diperoleh Dengan demikian, diperoleh nilai dari sebagai berikut Oleh karena itu, jawaban yang tepat adalah E
DiketahuiSistem Persamaan Linear Dua Variabel Berikut - Berikut ini merupakan pembahasan tentang Diketahui Sistem Persamaan Linear Dua Variabel Berikut semoga bermanfaat. Diketahui Sistem Persamaan Linear Dua Variabel Berikut. Matematika Kelas 8 :: 100INSTITUTE Sistem Persamaan Linear Dua Variabel (SPLDV) idschool
MatematikaALJABAR Kelas 10 SMASistem Persamaan LinearSistem Persamaan Linear Tiga VariabelSistem Persamaan Linear Tiga VariabelSistem Persamaan LinearALJABARMatematikaRekomendasi video solusi lainnya0149Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...0246Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...0146Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...0155Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua...Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua... Jawabanpaling sesuai dengan pertanyaan Diketahui sistem persamaan berikut: 2x+y=3 (3x-2y-1)(-x+y-6)=0 Jika (x_(1),y_(1)) dan (x_
Persamaan linear adalah salah satu persamaan aljabar yang dipelajari di sekolah. Sumber linear adalah salah satu sistem yang terdapat dalam ilmu matematika. Sistem ini termasuk dalam materi aljabar, yakni cabang dalam matematika yang menggunakan tanda dan huruf yang menjadi perwakilan angka-angka persamaan linear dapat dimanfaatkan manusia dalam kehidupan sehari-hari. Contohnya dalam hal penganggaran biaya pemakaian dan biaya operasional suatu memahami sistem ini lebih jauh, simak penjelasan mengenai sistem persamaan linear berikut Persamaan LinearMenurut Sandi Ragil Putra dalam bukunya yang berjudul Mengenal POM QM, sistem persamaan linear adalah salah satu persamaan aljabar. Persamaan ini memiliki karakteristik yang mana tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam sistem koordinat Kartesius, sistem yang menetapkan setiap titik secara unik dalam bidang dengan serangkaian koordinat persamaan linear ini umumnya memiliki dua sifat utama, yakniMisal l adalah persamaan linear, makaPenambahan dan pengurangan bilangan di kedua ruas persamaan l, tidak mengubah solusi persamaan bilangan tidak nol di kedua ruas pada persamaan l, tidak mengubah solusi persamaan linear dikelompokkan menjadi 3 jenis berdasarkan jumlah variabelnya. Adapun jenis-jenis sistem persamaan linear, yakniUntuk menyelesaikan soal persamaan liniear, seseorang harus menemukan model matematika dari suatu persamaaan terlebih dahulu. Sumber Persamaan Linear Satu VariabelBentuk umum dari jenis persamaan ini ialah ax + b = 0, dengan syarat a ≠ 0 dan b = konstantaContohnya, 5x + 10 maka x = - 10/5, jadi nilai dari huruf x adalah Persamaan Linear Dua VariabelBentuk umum dari jenis persamaan ini adalah ax + by = c, dengan syarat a, b, c adalah bilangan dapat menggunakan metode eliminasi, yakni metode meniadakan atau menghilangkan nilai dari sebuah variabel dan metode subtitusi, yakni mengganti nilai suatu variabel di suatu persamaan dari persamaan lainnyaHarga dua buah mangga dan tiga buah jeruk adalah Rp. kemudian apabila membeli lima buah mangga dan empat buah jeruk adalah Rp. Berapa harga satu buah mangga dan satu buah jeruk?Ilustrasi seseorang mengerjakan soal persamaan linear. Sumber menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model harga 1 buah mangga adalah x dan harga 1 buah jeruk adalah y, maka model matematika soal tersebut adalahDari kedua persamaan tersebut dapat diselesaikan dengan metode eliminasi dengan mengeliminasi variabel x maka dikalikan 5 untuk persamaan I dan 2 untuk persamaan dua, maka menghasilkanMaka nilai dari 1 buah jeruk adalah mengetahui nilai x bisa menggunakan cara berikut3. Persamaan Linear Tiga VariabelBentuk umum dari persamaan ini adalah ax + by + cz = d, yang mana a, b, c, d adalah konstanta. Penyelesaian persamaan linear tiga variabel dapat menggunakan cara penyelesaian persamaan dua variabel, yakni dengan metode eliminasi seperti yang telah dijelaskan sebelumnyaPersamaan linear tiga variabel juga bisa diselesaikan dengan metode subtitusi, integrasi dan determinasi.
-> Utbk Sbmptn Jogja 2020 Jelaskan Sistem Persamaan Linear 2 Variabel Terupdate Sistem persamaan linear soal dan jawaban persamaan kuadrat dengan x1 dan x2 dik Otosection Home

Ingat bahwa! Rumus persamaan garis lurus yang melalui 2 titik a. Dari grafik tersebut akan ditentukan persamaan garis yang melalui titik dan dengan cara berikut. Selanjutnya akan ditentukan persamaan garis yang melalui titik dan dengan cara berikut. Dengan demikian persamaan garis pada grafik tersebut sebagai berikut. b. Dari grafik tersebut terlihat bahwa kedua garis tersebut berpotongan di titik . Maka titik adalah penyelesaian dari kedua persamaan tersebut. Dengan demikian kedua persamaan tersebut adalah dan dan titik adalah penyelesaian dari kedua persamaan tersebut.

Diketahuisistem persamaan linear berikut x+y+z= 12 x+2y-z = 12 x+3y+3z = 24 Himpunan penyelesaian sistem persamaan linear di atas adalah {(x, y, z)} dengan perbandingan x : y : z adalah Sistem Persamaan Tiga Variabel 3 tahun lalu Real Time5menit Halllooo Gengs. Bagaimana keadaan kalian hari ini? Semoga selalu diberi kesehatan yang baik olehTuhan yang maha esa. Pada kesempatan kali ini saya akan memberikan contoh-contoh tentang sistem persamaan linear untuk dua variabel. Tanpa lama-lama, berikut ini soal-soalnya. SOAL PERTAMA Diketahui penyelesaian persamaan linear dua variabel adalah 4,5 dan 1,3. Tentukan persamaan linear dua variabel tersebut. PEMBAHASAN Penyelesaian persamaan linear dua variabel yaitu 4,5 dan 1,3. Penyelesaian linear dua variabel tersebut dapat dicari menggunakan metode yang biasanya kita gunakan untuk mencari persamaan garis yang melalui dua titik. Cara mengerjakannya seperti berikut ini. Titik 4,5 kita akan anggap sebagai titik $x_1,y_1$ sedangkan titik 1,3 akan kita anggap sebagai titik $x_2,y_2$ sehingga kita akan peroleh hasil sebagai berikut ini. Dengan demikian, pesamaan linear kedua titik tersebut adalah -2x + 3y = -7 SOAL KEDUA Tentukan nilai a jika diketahui persamaan linear dua variabel dan penyelesaiannya sebagai berikut ax-5y=a-1 dengan penyelesaian 2,1 PEMBAHASAN Diketahui persamaan linear dua variabel ax–5y=a–1 dengan penyelesaian 2,1. Substitusikan x=2 dan y=1 kedalam persamaan ax–5y=a–1. Sehingga akan diperoleh nilai a seperti berikut ini. ax–5y=a – 1 a2–51=a–1 2a–5=a–1 2a–a=-1+5 a=4 Dengan demikian nilai adalah 4. SOAL KETIGA Tentukan penyelesaian system persamaan linear dua variabel berikut ini menggunakan metode eliminasi. Berikut persamaannya 2x-3y=-10 persamaan 1 x+2y=2 persamaan 2 PEMBAHASAN Karena pada soal diperintahkan untuk menggunaan metode eliminasi maka kita akan menggunakan metode eliminasi. Kita akan mengeliminasi atau menghilangkan x agar kita mendapatkan nilai y dengan cara sebagai berikut. 2x-3y=-10 1 x+2y=2 2 Kita mengalikan persamaan satu dengan 1 danpersamaan kedua dengan 2 sebagaiberikut 2x-3y=-10 2x+4y=4 Setelah itu, kita kurangkan kedua persamaan yang telah diperoleh. Sehingga kita akan peroleh hasil seperti berikut. -7y=-14 y=2 Kita telah mendapatkan nilai y yaitu 4. Selanjutnya kita akan mencari nilai x dengan cara mengeliminasi y, seperti berikut ini. 2x-3y=-10 1 x+2y=2 2 Kita akan mengalikan persamaan pertama dengan 2 dan persamaan kedua dengan 3, seperti berikut ini 4x-6y=-20 3x+6y=6 Setelah itu kita kurangkan kedua persamaan diatas. Seperti berikut ini 7x=-14 x=-2 Sehingga kita telah peroleh nilai x yaitu -2 Dengan demikian, nilia x yang kita peroleh dari persamaan 2x-3y=-10 dan x+2y=2 yaitu -2 dan 2. SOAL KEEMPAT Gunakan sistem persamaan linear berikut ini untuk menentukan penyelesaian sistem persamaan. gunakan metode substitusi. 4x+3y/7-3=-2 x+2/3-3y+1/4=4 PEMBAHASAN Langkah pertama yang akan kita lakukan yaitu membuat salah satu persamaan kedalam bentuk x atau y. Pada soal ini saya akan ubah persamaan pertama kedalam bentuk x, dimana nilai x ini akan disubstitusi kedalam persamaan kedua. 4x+3y/7-3=-2 4x+3y/7=1 4x+3y=7 x=7-3y/4 Nahhhh nilai x-nya sudah kita peroleh, selanjutnya akan kita substitusikan x kedalam persamaan kedua. Nahhhhh… kita sudah memperoleh nilai y-nya yaitu -3. Selanjutnya akan kita cari nilai x dengan cara mensubstitusikan nilai y kedalam x=7-3y/4 Dengan demikian, akan kita peroleh nilai x sebagai berikut x=7-3y/4 x=7-3-3/4 x=7+9/4 x=4 Jadi, penyelesaian dari dua persamaan diatas yaitu x=4 dan y=-3 SOAL KELIMA Natan pergi kesebuah toko untuk membeli pensil dan bolpoin. Harga 3 pensil dan 2 bolpoin yaitu Rp Harga 4 pensil dan 1 bolpoin yaituRp Natan akan membeli 1 pensil dan 2 bolpoin. Natan menyerahkan selembar uang sepuluh ribuan. Berapakah uang kembalian Natan? PEMBAHASAN Untuk menjawab soal seperti ini, ada beberapa langkah yang perlu Gengs kerjakan yaitu diantaranya variabel-variabelnya, kemudian lakukan pemisalan permasalahan yang diberikan kedalam model matematika system persamaan linear dua variabel nilai-nilai variabel yang telah diperoleh kedalam model matematika yang telah dibuat pada langkah kedua. Dengan memperhatikan empat langkah diatas, mari kita kerjakan soal tersebut. LANGKAH 1 Misalkan x=harga 1 buah pensil y=harga 1 buah bolpoin LANGKAH 2 soal di atas dinyatakan bahwa harga 3 pensil dan 2 bolpoin yaitu Rp Dari keterangan tersebut kita peroleh persamaan berikut. 3x+2y= soal di atas dinyatakan bahwa harga 4 pensil dan 1 bolpoin yaitu Rp Dari keterangan tersebut kita peroleh persamaan berikut. 4x+y= 1 pensil dan 2 bolpoin Natan menyerahkan selembar uang sepuluh ribuan. Dari keterangan tersebut kita peroleh persamaan berikut. x+2y=A Uang kembalian Natan = 10000-A Dengan demikian kita mempunyai dua persamaan yaitu 3x+2y= dan 4x+y= LANGKAH 3 Untuk menyelesaikan system persamaan linear dapat kita gunakan beberapa cara. Pada soal ini akan kita gunakan metode substitusi. Langkah pertama yang akan kita lakukan yaitu membuat salah satu persamaan kedalam bentuk x atau y. Pada soal ini saya akan ubah persamaan kedua kedalam bentuk y, dimana nilai y ini akan disubstitusi kedalam persamaan pertama. 4x+y=8000 y=8000-4x Nahhhh nilai y-nya sudah kita peroleh, selanjutnya akan kita substitusikan y kedalam persamaan pertama. 3x+2y=8500 3x+28000-4x=8500 3x+16000-8x=8500 -5x=-7500 x=1500 Nahhhhh… kita sudah memperoleh nilai x-nya. Selanjutnya akan kita cari nilai y dengan cara mensubstitusikan nilai x kedalam y=8000-4x Dengan demikian, akan kita peroleh nilai y sebagai berikut y=8000-4x y=8000-41500 y=8000-6000 y=2000 LANGKAH 4 Substitusikan x=1500 dan y=2000 kedalam x+2y x+2y=1500+22000=1500+4000=5500 Natan memberikan selembar uang sepuluh ribuan sehingga uang kembaliannya sebagai berikut. Uang kembalian Natan= 10000-5500=4500 Jadi, uang kembalian Natan yaitu Rp SOAL KEENAM Budi lebih tua daripada Ani. Dua tahun lalu, dua kali usia Ani ditambah 3 kali usia Budi adalah 49 tahun. Saat ini, selisih usia mereka yaitu 3 tahun. Berapakah usia Ani dan Budi. PEMBAHASAN Misalkan x=usia Ani saat ini y=usia Budi saat ini Budi lebih tua daripada Ani dengan demikian y>x Dari keterangan pada soal Dua tahun lalu, dua kali usia Ani ditambah tiga kali usia Budi adalah 49 tahun, akan diperoleh persamaan sebagai berikut 2x-2+3y-2=49 2x-4+3y-6=49 2x+3y-10=49 2x+3y=59 Dari keterangan lebih tua daripada Ani ini, selisih usia mereka 3 tahun, akan diperoleh persamaan sebagai berikut y-x=3 x-y=-3 dengan demikian diperoleh sistem persamaan linear dua variabel yaitu 2x+3y=59 dan x-y=-3 selanjutnya akan kita cari nilai x dan y. Pada soal ini akan saya gunakan metode eliminasi-substitusi. 2x+3y=59 1 x-y=-3 2 Kita mengalikan persamaan satu dengan 1 dan persamaan kedua dengan 2 sebagai berikut 2x+3y=59 2x-2y=-6 Setelah itu, kita kurangkan kedua persamaan yang telah diperoleh. Sehingga kita akan peroleh hasil seperti berikut. 5y=65 y=13 Kita telah mendapatkan nilai y yaitu 13. Selanjutnya kita akan mencari nilai x dengan cara mensubstitusi nilai y kedalam persamaan 2, seperti berikut ini. x-y=-3 x-13=-3 x=10 Sehingga kita telah peroleh nilai x=10 dan y=13 Dengan demikian, usia Ani saat ini 10 tahun dan usia Budi saat ini 13 tahun. SOAL KETUJUH Tentukan penyelesaian sistem persamaan linear dua variabel dari 2x-3y=-10 dan x+2y=2 menggunakan metode grafik. PEMBAHASAN Pertama-tama, kita akan menganggap kedua persamaan di atas sebagai garis pada bidang kartesius dan kita akan menggambar kedua garis tersebut pada bidang kartesius. Cara yang akan kita lakukan untuk menggambar garis 2x-3y=-10 yaitu sebagai berikut. Ambil dua titik sembarang yang memenuhi persamaan tersebut. Misalkan kita ambil y=0 maka 2x-30=-10 2x=-10 x=-5 Diperoleh titik -5,0 Misalkan kita ambil lagi y=2 maka 2x-32=-10 2x-6=-10 2x=-4 x=-2 Diperoleh titik -2,2 Cara yang akan kita lakukan untuk menggambar garis x+2y=2 yaitu sebagai berikut. Ambil dua titik sembarang yang memenuhi persamaan tersebut. Misalkan kita ambil x=0 maka 0+2y=2 y=1 Diperoleh titik 0,1 Misalkan kita ambil lagi y=0 maka x+40=2 x=2 Diperoleh titik 2,0 Dengan demikian kedua garis tersebut dapat digambar dalam satu bidang kartesius. Setelah digambarkan akan terlihat bahwa kedua garis tersebut berpotongan di titik -2,2. Jadi, penyelesaiannya -2,2 Mudah bukan. Sampai disini dulu ya Gengs … Jangan lupa untuk terus berlatih mengerjakan soal-soal lainnya. Semoga bermanfaat. sheetmath gXVkW.
  • d0jebduud7.pages.dev/276
  • d0jebduud7.pages.dev/379
  • d0jebduud7.pages.dev/106
  • d0jebduud7.pages.dev/127
  • d0jebduud7.pages.dev/202
  • d0jebduud7.pages.dev/360
  • d0jebduud7.pages.dev/198
  • d0jebduud7.pages.dev/38
  • d0jebduud7.pages.dev/215
  • diketahui sistem persamaan linear berikut